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Starting from analogies of quantum-classical correspondence, we define desired properties of a quan-
tization scheme between classical functions in phase space and Hermitian operators in a Hilbert
space. Motivated by reducing ambiguity, we construct the Wigner-Weyl transforms which produce
a quantum algebra corresponding, in the classical limit, to the Poisson algebra. Considering the
density operator, we develop the Wigner function, a probability density in phase space describ-
ing our system without reference to an ambient Hilbert space. We further specify applications of
this quantization technique to coherence and decoherence as they relate to recovering semiclassical
behavior.

I. INTRODUCTION

In learning quantum mechanics, many of our choices
are motivated by the desire for classical intuition to hold.
Starting from wave mechanics for example, we use a par-
ticular operator representation for position q and mo-
mentum p yet even for as simple of an expression as qp,
we have ambiguity in how to construct a corresponding
Hermitian operator. Once formalizing classical mechan-
ics, we arrive at a number of compounding desires for
such a prescription which no quantization can fulfil. As
a result, instead of constructing a perfect system of quan-
tization, we instead ask what a particular quantization
allows us to understand.

II. CLASSICAL FORMALISM

To tell how well our quantization compares to classical
mechanics, we will need to treat it formally. For this, we
will begin with the well-known Hamiltonian formalism
for a system with N degrees of freedom. Here, the state
of our system is described by pairs of coordinates qi and
pi where the index i spans the N degrees of freedom.
These correspond to the familiar generalized coordinates
and generalized momenta in Lagrangian mechanics.
For simplicity, we will assume our coordinates are un-
bounded. Otherwise, the following arguments hold only
locally in so-called Darboux coordinates on a symplectic
manifold.

When we speak of a phase space, we mean the space of
all possible choices of qi and pi which we assume live on
a smooth symplectic manifold M . For our purposes, we
will think of this manifold as R2N . We will now consider
the space of all real smooth functions on M which we
denote C∞(M). To represent our physical system, we
fix a particular function, the Hamiltonian, H(qi, pi, t).
Once chosen, the trajectory of a particle is described by

the familiar Hamilton’s equations of motion:

∂qi
∂t

=
∂H

∂pi
∂pi
∂t

= −∂H
∂qi

(1)

From here, we will construct the classical Poisson
bracket, a map from two functions A,B ∈ C∞(M) to
another denoted {A,B} ∈ C∞(M) given by

{A,B} =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
. (2)

One particularly useful consequence arises from consider-
ing the Poisson bracket of an arbitrary time-independent
function with the Hamiltonian. Substituting Hamilton’s
equations of motion, 1 above, we have

{A,H} =
∂A

∂q

∂q

∂t
+
∂A

∂p

∂p

∂t
=
dA

dt
(3)

which is why we say the Hamiltonian is the generator of
time evolution, even classically. If {A,H} = 0, we say
the functions Poisson commute or are in involution. One
consequence is that the value of A is conserved along the
trajectory so we think of the Poisson bracket as encoding
our conserved quantities.

To see why the Poisson bracket is so useful, let us con-
sider a different interpretation. First, we may associate to
any function A ∈ C∞(M), a vector field vA : M → R2N

which assigns to each point (qi, pi) ∈M the correspond-
ing trajectory, 1, if we had treated it as a Hamiltonian.
That is

vA(q, p) =

N∑
i=1

∂A

∂pi
q̂i −

∂A

∂qi
p̂i, (4)

where hats indicate basis vectors in the space R2N .
From here, we see that the Poisson bracket may also
be interpreted as a directional derivative, that is
{A,H} = vH · ∇A = −vA · ∇H. We further see that
if A Poisson commutes with H, that H is unchanging
along the trajectory generated by A. This is known
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as Noether’s Theorem, a fundamental law relating
symmetries to conserved quantities, which we see is
encoded in our Poisson bracket. [1]

In quantum mechanics, we recall the quantum ana-
logue of equation 3 above, the Ehrenfest Theorem which
governs the rate of change of expectation values,

d 〈A〉
dt

=
−i
~
〈[A,H]〉 . (5)

So the fact [H,A] = 0 implies the quantity 〈A〉 is
conserved in a system evolving according to a choice of
H. Conversely, 〈H〉 is conserved in a system evolving
with Hamiltonian A. So we say the symmetry is
encoded in our commutator bracket. One should note
this expression relates expectation values and is thus
independent of the choice of Schrodinger or Heisenberg
picture. Later we will see the phase space formulation
shares the same consequence.

III. QUANTIZATION

Now we will look more closely at this correspondence
by introducing the concept of a quantization. A quanti-
zation is formally a map Φ sending a smooth function in
our phase space to an operator on a Hilbert space. We
attribute to Dirac a number of axioms we expect such
a map to uphold. [2] First, based on the analogues ob-
served above, we expect the commutator to be compati-
ble with the Poisson bracket for any two smooth functions
A and B i.e.

[Φ[A],Φ[B]] = i~Φ[{A,B}] (6)

Thus we see classical symmetries are preserved between
Poisson and commutator algebras. Next we require con-
stant functions correspond to a multiple of the identity,
1, explicitly

Φ[1] = i~1. (7)

Thus we recover the canonical commutation relation
[Φ[q],Φ[p]] = i~1 and retain associated relations such as
the uncertainty principle. Finally, we expect a complete
set of Poisson commuting functions to correspond to a
complete set of commuting observables for a quantum
system, a rather intricate relation.

Even substituting the latter for the simpler require-
ment that Φ[q] = q and Φ[P ] = ∂q, there is a theorem
of Groenewold that such a perfect quantization does not
exist. [3] Instead, attempts to map between classical and
quantum observables must drop a requirement. One such
example is the construction of geometric quantization

Φ[f ] = −i~∇vf + f ·

where · is simply multiplication and ∇vf is an inno-
cent notation for a covariant derivative locally along the

Hamiltonian vector field from Equation 4. For each com-
ponent, there is a gauge term added to the derivative
obeying a particular quantization condition. On many
manifolds, the first two properties hold which is desired
for highly theoretical applications such as Chern-Simons
Topological Quantum Field Theories. [4] For our pur-
poses, we will instead relax the Poisson bracket - com-
mutator compatibility in what is known as a deformation
quantization. This will allow us to treat familiar systems
such as the harmonic oscillator without complex topolog-
ical restrictions.

Constructing a quantization may seem obvious at first
glance - we are used to the canonical or Schrodinger quan-
tization, for example by sending q to multiplication by
itself and p to a derivative. This works fine for common
systems until one encounters an expression such as qp,
which is not excluded as a conserved quantity in arbi-
trary coordinates. Now we must decide on the order to
apply our operators. Such an unambiguous ordering may
also appear obvious such as to first apply every p, the
Wick ordering, or to take the average of all ordered per-
mutations, the Weyl ordering. However, as Groenewold’s
proof shows, any ordering breaks the Poisson bracket -
commutator compatibility relation for terms of degree
four or larger. The reader may wish to verify that under
the Weyl ordering, the following counterexample holds:

{q3, p3} = {q2p, qp2}[
Φ[q3],Φ[p3]

]
6=
[
Φ[q2p],Φ[qp2]

]
.

Losing this relation may seem a tragic loss, however we
will develop a formalism so that the error is of order ~3.
As a result, in the classical limit as ~→ 0, we will recover
Hamiltonian dynamics.

IV. PHASE SPACE OPERATOR ALGEBRA

Beginning from the symmetric Weyl ordering of poly-
nomials, we seek a more general map from smooth func-
tions on a manifold to operators on a Hilbert space. Fix-
ing two operators Q and P on a Hilbert space obeying
the canonical commutation relation (such as the stan-
dard Schrodinger operators on the space of normalizable
functions of position), one such choice is the Weyl map,
which for one coordinate may be written as

Φ[A] =

∫∫∫∫ ∞
−∞

dpdqdadb

(2π)
A(q, p)eia(Q−q)+ib(P−p). (8)

At first glance, we notice this is simply a combination of
a Fourier transform followed by an inverse Fourier trans-
form into the operators Q and P rather than the original
coordinates. One must be especially careful in noting
that this object is an operator and thus the order of in-
verse transforms in Q and P does matter.

Now, making use of the non-commutative structure
brought by applying the Baker-Campbell-Hausdorff for-
mula, we note that powers of linear combinations of q, p
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correspond to powers of linear combinations of Q,P .
From this, one may easily recovers the Weyl ordering for
polynomials. Alternatively, we may instead invoke the
fact the exp(ibp) term generates translations in q in or-
der to express every matrix element in the position basis
(eigenstates of our particular Q)

〈x|Φ[A] |y〉 =

∫ ∞
−∞

dp

(2π~)
A

(
x+ y

2
, p

)
eip(x−y)/~. (9)

This is convenient as we may then calculate expectation
values without knowing the particular form the Q and P
operators. [5]

Analogous to the Fourier transform (and in fact on
the same function spaces as the Fourier transform), the
Weyl quantization admits an inverse map from operators
to functions known as the Wigner transform.

A(q, p) = 2

∫ ∞
−∞

dx 〈q + x|Φ[A] |q − x〉 e−i2px/~. (10)

We will soon see that this expression also provides a rep-
resentation of the state of the system as a function on
the original phase space.

While exploring analogies between the Fourier and
Weyl transformations, we recall the existence of convolu-
tion. That is, by denoting the Fourier transform by a hat,
that for two normalizable functions f and g, we can de-

fine another function f ∗ g such that f̂(p)ĝ(p) = f̂ ∗ g(p).
For the Weyl transform, we can just as well require the
existence of a so-called Moyal product A ? B such that
for any smooth functions on our manifold A and B, we
have

Φ[A]Φ[B] = Φ[A ? B]. (11)

We will now attempt to derive the resulting product
from our Weyl quantization map. Ultimately, applying
the inverse transform, Equation 10, to the product of
the transforms, Equation 9, we combine terms using the
Baker-Campbell-Hausdorff formula and eventually ob-
tain a series expansion for A ? B. Following and sim-
plifying Moyal’s original procedure [6], we dispense with
mathematical decorum and define a new left derivative
operator

←−
∂q in contrast to the standard right derivative,

−→
∂q . Here, the arrow represents the direction the operator

acts, thus A
←−
∂qB = ∂A

∂q B while A
−→
∂qB = A∂B

∂q . Then we

can express the solution as a formal power series in these
new derivatives as

A ? B = A exp
[
i~
(←−
∂q
−→
∂p −

←−
∂p
−→
∂q

)
/2
]
B. (12)

Though this expression seems rather unenlightened, it
can in principle be calculated for any smooth function.
Once the Moyal product is defined, we can finally probe
the question of how the Wigner-Weyl quantization fails to
preserve the commutator-Poisson bracket relation. Using
linearity and equation 11 above, we have Φ[A]Φ[B] −
Φ[B]Φ[A] = Φ[A?B−B?A]. Thus we can now define the

Moyal bracket of two functions, again expanding sine into
complex exponentials then into a formal power series, as

{{A,B}} = (A ? B −B ? A) /(i~)

=
2

~
A sin

[
~
2

(←−
∂q
−→
∂p −

←−
∂p
−→
∂q

)]
B

(13)

Thus we immediately have the relation

[Φ[A],Φ[B]] = i~Φ[{{A,B}}], (14)

indicating that our quantization has replaced our commu-
tator not with the Poisson bracket but with the Moyal
bracket. Conveniently, to zeroth order in ~, they corre-
spond. Thus we expect behavior in our system beyond
classical Hamiltonian behavior. This, we will see, mani-
fests itself as decoherence.

V. DENSITY MATRIX

To motivate our treatment of states in the phase space
formulation, we will return to its original context - sta-
tistical mechanics. Recall that the ensemble average of
a quantity A with particular fractions wi being in eigen-
state |ai〉 such that Φ[A] |ai〉 = ai |ai〉, would simply be
the weighted sum of the eigenvalues. Extrapolating to a
more general basis bi, we then have, by resolution of the
identity,

〈A〉 =
∑
i

wi 〈ai|A |ai〉 =
∑
i,j

wi 〈ai|A |bj〉 〈bj |ai〉 . (15)

Rearranging, we have

〈A〉 =
∑
j

〈bj |
∑
i

(wi |ai〉 〈ai|A) |bj〉 = Tr[ρA] (16)

where we have defined the density matrix operator

ρ =
∑
i

wi |ai〉 〈ai| , (17)

where the sum is taken over a number of distinct states
in an ensemble ai. The corresponding density matrix we
refer to is simply the operator expressed in in a given ba-
sis which is inherently Hermitian. This quantum density
matrix corresponds to the semi-classical density ρ such
that the ensemble average of a quantity in phase space is
given by

〈A〉 =

∫
ρ(q, p)A(q, p)

(
dqdp

2π~

)N

(18)

. For the canonical ensemble, it is given by the expression

ρ = exp(−βH(q, p))/
∫

exp(−βH(q, p)) [dqdp/(2π~)]
N

.
Clearly, this smooth function on phase space is positive
everywhere. Given the correspondence above, we will in-
deed be able to associate a density with analogous expec-
tation values. However, we will find discrepancies includ-
ing negative values and dependence on ~ in our classical
density.[7]
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VI. WIGNER FUNCTIONS

Now that we’ve constructed the density matrix, a per-
fectly functional Hermitian operator, it is now reason-
able to ask what the corresponding function through the
Wigner transform could represent.

For our purposes, we will assume our system is one
dimensional and in the pure state 〈x|ψ〉 = ψ(x) but the
following procedure is defined in general. Now applying
the Wigner transform, Equation 10, to the density matrix
operator, we arrive at the so-called Wigner Function,

W (q, p) =
1

π~

∫ ∞
−∞

ψ∗(q + x)ψ(q − x)e−i2px/~dx, (19)

which we will see contains exactly the same information
as the wavefunction.

Motivated by the analogous classical behavior in equa-
tion 18, we may define the expectation value of any ob-
servable A for a system with Wigner function W as the
weighted integral in phase space given by

〈Φ[A]〉 =

∫ ∞
−∞

∫ ∞
−∞

dqdpW (q, p)A(q, p). (20)

To interpret this expression, we will consider our
canonical cases, q and p. Letting A(q, p) = q, we may
perform the p integral first to see that

∫
dpW (q, p) really

is the probability density of observing a given value of
position meanwhile, allowing A = p, we see

∫
dqW (q, p)

is the probability density of observing a given momen-
tum. In this sense, the Wigner function treats the phase
space variables symmetrically in contrast to the Fourier
transform relationship in the canonical/Schrodinger case.
Recall this was our original motivation for the Weyl quan-
tization.

Along with symmetry, a number of unintended proper-
ties emerge from this definition of the Wigner function.
By normalizability, we know each term in Equation 19
has a magnitude of at most one yet we cannot ensure
the entire function is positive. In fact, only specific min-
imum uncertainty states are guaranteed positive. Above
we saw that when evaluating an expectation value, the
Wigner function integrates in both q and p to a probabil-
ity density which is positive for a given state. Otherwise,
we are able to bound the regions where this property fails
as a function of ~ which disappears in the classical limit.

Similarly, we cannot prevent an ~-dependence from ap-
pearing in our Wigner function. Instead, we observe this
function is inherently quantum - it may live in the space
of smooth functions on our classical manifold yet it de-
pends on a parameter introduced by our quantization
procedure. A simple example is the harmonic oscillator
below in equation 26.

Before working on an example, we will need to ad-
dress the dynamics of our system in the phase space for-
mulation. Requiring evolution of expectation values as
in equation 5, or by directly combining the Schrodinger

equation with the definition of the Wigner function, we
arrive at evolution again governed by the Moyal bracket:
[8]

dW

dt
= −{{W,H}} (21)

Thus the value of the Wigner function does not follow
the Hamiltonian time evolution of a classical function in
phase space but a more unintuitive perturbation.

Finally, given our definitions above, one can derive
given a position-basis energy eigenstate ψn that the cor-
responding Wigner functions Wn obey the phase-space
relation

H(q, p) ? Wn(q, p) = EnWn(q, p). (22)

Again our problem-solving can be reduced to a relation
in the phase space.

Ultimately, we are able to describe our quantum sys-
tem using not an element of an ambient Hilbert space
but instead a real function of both position and momen-
tum coordinates in phase space. However, unlike the
classical motion generated from the Poisson bracket with
the Hamiltonian, the Wigner function evolves with a de-
formed term which is non-local and generates decoher-
ence.

VII. COHERENCE AND DECOHERENCE

Ultimately, the phase space formulation provides in-
sight into the definition of coherence - whether states
can be constructed to evolve according to rigid classical
behavior or not. This is generally useful for example in
understanding optics of coherent squeezed states. If not,
we can instead characterize the degree of decoherence in
a given system - under which conditions the system may
be treated as decoupled and semi-classical.

We know coherent states are generally constructed
from energy eigenstates of the 1D harmonic oscillator, so
we will start there using our new approach. Note, with-
out reference to the form of the solutions in a Hilbert
space, we can still be able to describe motion. For sim-
plicity, consider q, p coordinates with constants absorbed
so that H(q, p) = 1

2

(
q2 + p2

)
so we arrive at the sym-

metric form of equation 22,[
1

2

(
p− i~

2
∂q

)2

+

(
q +

i~
2
∂p

)2
]
Wn = EnWn (23)

Here, we have simplified the exponentials in equa-
tion 12, remembering the translation relation
exp(−i(−i~∂q)a/~)H(q, p) = H(q − a, p) and an-
tisymmetric equivalent for ∂p where the remaining
directional partial derivatives operators may be con-
sidered constants as commuting. To find a constraint
on our solution, we use either the symmetry that
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H ?Wn −Wn ? H = 0 or the fact the solution is purely
real to find

i~(q∂p − p∂q)Wn = 0 (24)

This reduces to a requirement of radial symmetry, that
is, Wn(q, p) = W (q2 + p2). The phase-space eigenvalue
equation can now be expressed in the variable s = q2+p2

as

(s− 2En)W − ~2(Ws + sWss) = 0 (25)

with series solution around the singular point s = 0 con-
verging only when En = ~ω(n + 1/2) as expected. In
this case, the solution may be expressed as the product
of a Laguerre polynomial and Gaussian, as tedious of a
calculation as the Hermite polynomials in the traditional
solution:

Wn =
(−1)n

π~
Ln

(
q2 + p2

~/2

)
e−(q

2+p2)/~. (26)

In principle, one could compute the evolution of any dis-
placed linear combination of these harmonic oscillator
states using numerical methods. However, for this simple
potential, we know the classical trajectories are rigid ro-
tation. Thus, classical quantities such as x and p and the
associated expectations ought to rotate from their initial
values. We see here, that though the Wigner functions
are phase space densities, they depend on the quantity ~
from quantization and are negative over large regions.

Ultimately, even our evolution for the Wigner func-
tion is Hamiltonian, that is, determined entirely by the
Poisson bracket.

dW

dt
= {{H,W}} = q

∂W

∂p
− p∂W

∂q

=
∂H

∂q

∂W

∂p
− ∂H

∂p

∂W

∂q

= {H,W}

In other words, the Wigner function also rigidly rotates -
periodically and without dispersion. For a general Hamil-
tonian, this will not be the case as additional terms will
arise in the expansion of the Moyal bracket. [3]

One such example is a system placed in a heat bath
which introduces a term into the Moyal bracket of the

form D ∂2W
∂p2 . Given a superposition of Gaussians with

standard deviation δ separated by a distance `, the
Wigner function includes an oscillatory term of the form

Wosc(q, p) =
1

π~
exp

(
−p

2δ2

~2
− q2

δ2

)
cos

(
`p

~

)
(27)

Ultimately, this oscillation will decay away due to the
extra term in the bracket, in a process known as deco-
herence. Thus, the system recovers the classical behav-
ior of two independent wavepackets on a sufficiently large
timescale. This characteristic loss of entangled informa-
tion is perhaps only explicit from this perspective. [9] In
more generality, decoherence is a very separate concept
from coherence. Ultimately a more thorough analysis
with density operators would reveal conditions in which
terms in the Wigner function are suppressed. These then
correspond to cases in which a block of the density matrix
may be treated as an independent system. For example
in the above system, the left and right wave packets be-
come thoroughly decohered from each other.

VIII. CONCLUDING REMARKS

Overall, we have demonstrated one specialized quanti-
zation procedure which allows us consider states as semi-
classical densities on phase-space without looking into a
Hilbert space, though we are free to consider the cor-
responding operators there. We do note that other in-
vertible transforms constructed from different orderings
are possible. For example, if instead of symmetrically
applying the Q and P operators, we instead substituted
and ordered harmonic oscillator creation and annihilation
operators, we would have arrived at the popular Segal-
Bargmann quantization. In any case, we could recalcu-
late the Moyal star product and bracket by its defining
property, equation 11. For many choices, the bracket will
still be a deformation of the Poisson, that is, equal in the
limit ~→ 0. [4] Ultimately, there are many formulations
of quantum mechanics which provide consistent expecta-
tion values and have semiclassical interpretations - each
providing insight into particular systems.
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