
2015

Software
Development
Champion, PA

PHYSICS SIMULATOR COLLECTION

[1]

Table of Contents

2 Research

3 Description of Project
4 Plan of Work Log

5 Project Requirements

6 High-Level Software Design
7 Testing

8-14 End-User Product Documentation

15 Evaluation
16 References

17 DVD

[2]

Research

 Physics problems, though painstaking to work out by hand, have been reduced through

mathematical models and theorems to simple equations.

 In orbital mechanics, Newton’s Universal Law of Gravitation,�⃗� =
𝑚𝑀𝐺

𝑟2 �̂�, leads to

expressions for an entire elliptical orbit with only a point-mass abstraction. Kepler’s Third Law,

𝑇2𝛼𝑎3, can then be used to find periods of oscillation. After a fair bit of linear algebra and

vector calculus, most parameters can be calculated. For launches and transfers, however,

another expression is required. A derivation from changes in momentum, mass, and

impulse/exhaust velocity yields the rocket equation, ∆𝑣 = 𝑣𝑒 ln
𝑚𝑖

𝑚𝑓
.

 Oscillator mechanics, or the dynamics of simple harmonic oscillators, are physical

systems reduced to the ODE 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 0 with ideal/no-damping solution,

 𝑥 = 𝐴 cos 𝜔𝑡 + 𝜑. For springs, 𝜔 = √
𝑘

𝑚
 , but for penduī, 𝜔 = √

𝑔

𝐿
 . Most oscillatory

parameters, such as frequency, angular frequency, period, wavelength, and wavenumber, can

be found through multiplication, division, and 2π coefficients. The wavelength and

wavenumber additionally require the propagation velocity v, where 𝑦 = 𝐴 cos(𝑘(𝑥 − 𝑣𝑡) + 𝜑).

 Two simple forces are documented caused by electric and magnetic fields on charged

particles: the Coulomb and Lorentz. The Coulomb force between two particles of charge q is

�⃗� =
𝑞1𝑞2

4𝜋𝜀0𝑟2 �̂� = 𝑞�⃗⃗� and the Lorentz Force in a magnetic field B is �⃗� = 𝑞𝑣 × �⃗⃗�. The Lorentz Force

requires a vector cross-product, which must be evaluated with either a matrix determinant or

sin of the angle between the velocity and B-field vectors.

 More complex problems in many physics fields involve solving ODEs beyond 𝑚�̈� = −𝑘𝑥.

Thankfully, most are linear with constant coefficients or can be linearized into a system to

solve. The solutions are simple to calculate and analyze, but require a plethora of special cases

which lead to long acronyms such as SOLHCCODE (2nd-order linear homogeneous constant-

coefficient ordinary differential equation).

 Finally, the Hydrogen Atom energy eigenstates can be found by solving the 2nd-order in

3-D space, 1st –order in time partial differential equation 𝑖ℏ
𝜕𝜓

𝜕𝑡
= (

−ℏ2

2𝑚
∇2 +

𝑒2

4𝜋𝜀0𝑟
) 𝜓 = 𝐸𝜓. The

solutions have energy differences, where when put in the equation E=hf with relativistic

corrections, produce the light emission spectrum of hydrogen. Plugging in quantum numbers

for energy level, orbital angular momentum, azimuthal angular momentum, and spin into a

resulting equation reveal individual spectral lines.

Most importantly, putting values in any of these equations would predict further

meaningful values, forming a practical application.

[3]

Description of Project

Problem: It is difficult to calculate necessary parameters in physics

problems by hand.

Solution: Develop a program to more easily reach numerical solutions,

utilizing all necessary equations.

A user of the program will likely have some interest in the fields

they will use the program for, and may accelerate their exploration

using the calculation features in the program. They may develop a

better grasp of the physical meanings of the parameters when

calculating. Finally, continuous calculation will reveal numerically the

importance of input parameters and initial conditions in the

trajectories, energies, and forces acting on particles and more massive

objects.

The program simply reads inputs when told do so and draws calculation

results on the screen. Among the ~25 possible calculations are escape

velocity (from mass/radius of a body), force between two charges (from

each charge and displacement), and solutions to second order linear

homogeneous ordinary differential equations with constant

coefficients.

[4]

 Software Development

TECHNOLOGY STUDENT ASSOCIATION
PLAN OF WORK

Date Task
Time

involved

 Team member

responsible
Comments

12/8/2014 Find problem;
Derive equations;

Begin process

5h 1,2 Compromised and
computed;

Implemented OM
window/input

12/11/2014-

12/18/2014

Start
documentation,

Continue
implementation

4h 1 Added orbit display,
presets;

Documented progress

12/29/2014 Redesign GUI 3h 2 New images (orbits,
logos, and icons)

1/8/2015-

1/12/2015

Begin Presentation,
Document

1h 1,2 Create, convert, and
shorten process

2/15/2015-

2/19/2015

Extend Program to
more physics

16h 1 OSC,EM,ODE,and
HATOM classes

2/20/2015 Add Help, Presets 4h 1 Added UNICODE
support

3/5/2015 Update
Documentation

2h 1,2 Modified processes
and end user

documentation to
reflect new menus

3/13/2015

Compile Project 1h 1,2 Converted
src/docs/presenation

to pdf; burned.

Advisor signature

[5]

Project Requirements

 For a user to perform calculations accessibly, a Graphical User Interface
must be developed and interact with the calculation portion of the program. An
Application Programming Interface must be acquired, utilized, and available at
runtime to display a GUI. All calculations must be reduced to functions with a
series of inputs and an individual output. This derivation, though easy, should
consider what information the user would know before consulting the program as
to not require prior calculation from the user.

 The GUI must be simple and consistent, and the program’s calculations and
algorithms must be efficient as to be a fast alternative to other methods of
calculation.

[6]

Process
State

Changes

Read
Inputs

Calculate
Results

Output

Results

Wait for
Input

High-Level Software Design

The built-in Microsoft Windows API is wrapped by the windows.h header
file for the user interface. The program will be called by the functions int WINAPI
WinMain (…) and LRESULT CALLBACK WindowProcedure(…). Inputs are added as
"EDIT" windows and are returned as handles. The
GetWindowText(HWND,char*,int) and SetWindowText(HWND,char*) functions
are utilized to read and write values when a button’s ID is returned as a
parameter in an event (WM_COMMAND).

Functions of the form recalc() are called to perform derived arithmetical
operations. The C++ standard library is used for math and type conversion
functions. Memory is dynamically allocated or buffered where possible by
implementations such as: wchar_t* str = new wchar_t[len]; … delete[] str;. Logical
structures (if, switch, state machine architecture), loops (for, while), and pointers
(LPCWSTR, handles) are utilized to optimize program flow.

[7]

Testing

Solution accuracy:

 Using the default values for the mass/radius of Earth, the program
calculates the accurate minimum orbital (7921.3 m/s) and escape (11202
m/s) velocities.

 Given a delta v of the default rocket (3408.6m/s), and an initial velocity of
roughly 8000 m/s, the rocket should be able to escape the influence of the
planet, as indicated by the display.

 The ODE solver solutions match those given by Wolfram Alpha for the given
inputs.

 The frequencies of light given off by differences between high energy
eigenstates and n=2 states correspond accurately to within the visible
spectrum.

Module unit testing:

 All three forms of input are read accurately by the program.

 All presets fill in the proper inputs.

 The GUI navigates without errors in display/overlap.

Problems/Solutions:

 UNICODE characters are converted to obfuscated ANSI
o Implemented wide characters for dynamic support

 Outputs are too long
o Formatted and stress-tested to allow numbers as long in display as,

for example, 4.56746e112 to fit on the screen

 Module windows all shown at the same time
o Use ShowWindow and CreateWindow to hide/redraw windows on

demand.

[8]

End-User Product Documentation:

Physics Simulator Collection

Beginning:

After starting the program, PSC.exe, you will be met with the main menu

window (see next page).

 Select a button corresponding to the type of problem you wish to solve.
Calculating:

After entering a program window, you will be met with a series of input

boxes with default values and a calculate button.

Type in the values of the input into the text boxes, and then press

Calculate to update the outputs. (See Formatting)

 Note: If there are headings, only values under the heading are relevant

to calculation.

Formatting:

Inputs must be numbers from 2.2250738585072014 × 10−308 to

1.7976931348623158 × 10308 in one of the 3 forms:

 25463525

 2.5463525e7

 2.5463525e+7

Units:

 For their international recognition and functionality, all values are

expressed in SI (Système International d'Unités) units.

The rest of this documentation contains the meanings of each input

and output, for your convenience.

Further information as to equations can be found on Google.

[9]

End-User Product Documentation- Graphical Breakdown

General:

 Quit

program

Return to

PSC menu
Fill in predefined
values

View help text

Menu: Select an individual calculator or simulator

[10]

Main Inputs:

 Craft Mass: Total mass of the craft (in kg)

 Final Mass: Dry mass of the craft/mass after all fuel spent (in kg)

 Planet Mass: Total mass of the body being orbited (in kg)

 Planet Radius: Radius of the body being orbited (in m)

 Expected Time: Time expected to reach orbit/for ΔV correction (in s)

 Exhaust Velocity (Specific Impulse*g): Velocity of the exhaust relative to the craft (in m/s)

Secondary Inputs:

 Semi-Major Axis: a of orbital trajectory/for orbital period calculation (in m)

 Current Velocity: Velocity relative to orbital body for orbit classification using V+ ΔV for highest

achievable speed (in m/s)

Numerical Outputs:

 Orbital Velocity: Orbital velocity of the main body (in m/s)

 Escape Velocity: Escape velocity of the main body (in m/s)

 Ideal ΔV: ΔV (highest achievable change in velocity for maneuvering) (in m/s)

Primary Display:

 Image: Shows type of orbit (Sub-Orbital/Orbital/Escape)

 Orbital Period: Period of the current orbit given the Semi-Major Axis of the current trajectory

Calculate Button:

 Press to update display with new inputs.

Presets Tab:

 Select from among various celestial bodies to fill in masses/radii.

Main

Inputs

Numerical

Outputs

Secondary

Inputs

Primary

Display

[11]

Spring Module:

 Constant k: Spring Constant / Material Dependency (in N/m)

 Mass: Mass on Spring (in kg)

 x(0): Initial displacement from equilibrium of end of spring (in m)

 v(0): Initial rate of change of displacement from equilibrium of end of spring (in m/s)

 Calculate Button: Press to update display with new inputs.

 Display: ω: Angular Frequency (in rad/s) | T: Period of oscillation (in s) | f: Frequency (in Hz)

Pendulum Module:

 Length l: Length of string on which mass is suspended (in m)

 θ(0): Initial angle displaced from equilibrium of end of spring (in rad)

 v(0): Initial rate of change of angle displaced from equilibrium of end of spring (in rad/s)

 Calculate Button: Press to update display with new inputs.

 Display: ω: Angular Frequency (in rad/s) | T: Period of oscillation (in s) | f: Frequency (in Hz)

Pendulum Module:

 ω: Angular Frequency (in rad/s) | f: Frequency (in Hz) | T: Period of oscillation (in s)

 λ: Wavelength (in m) | K: Wavenumber (in rad/m) | v_p Propagation velocity (in m/s)

 Convert: Convert value to left into the remaining parameters

Presets Tab:

 Select from among various velocities to fill in propagation velocity.

Spring
Module

Pendulum
Module

Convert
Module

[12]

Coulomb Module:

 q1: Charge of stationary particle (in C)

 q2: Charge of interacting particle (in C)

 Displacement r: Distance between the charges (in m)

 Calculate Button: Press to update display with new inputs.

 Display: Coulomb Force: Magnitude of force on each particle (in N)

Pendulum Module:

 q: Charge of interacting particle (in C)

 v: Speed of interacting particle (in m/s)

 B: Magnitude of magnetic field the particle is moving through (in T)

 θ: Angle from velocity vector to magnetic field vector (in rad)

 Calculate Button: Press to update display with new inputs.

 Display: Lorentz Force: Magnitude of force on charged particle from magnetic field (in

N)

Presets Tab:

 Select from among various charges (+/- elementary charge) and common angles to fill in

inputs.

Coulomb
Module

Lorentz
Module

[13]

 ODE Module:

 Coefficients: Constants to fill in differential equation (may be 0 for First-Order/0-Order)

 Calculate Button: Press to update display with new inputs.

 Display: Solution, x(t) = 𝐴𝑒𝑎𝑡 + 𝐵𝑒𝑏𝑡; If r is complex, cosine is used in addition to exponential

System Module:

 Coefficients: Constants to fill in differential equations

 Calculate Button: Press to update display with new inputs.

 Display: Solution, x(t) = 𝐴𝑒𝑎𝑡 + 𝐵𝑒𝑏𝑡 , y(t) = 𝐴𝑐𝑒𝑎𝑡 + 𝐵𝑑𝑒𝑏𝑡

o Achieved using Eigenvalue Analysis algorithm

See in-program “Help” for further understanding.

ODE
Module

System
Module

[14]

Inputs:

 n : Principle quantum number �̂�𝜓 =
𝐸0

𝑛2 𝜓

 l : Azimuthal quantum number 𝐿2̂𝜓 = ℏ2𝑙(𝑙 + 1)𝜓

 m : Magnetic quantum number 𝐿�̂�𝜓 = ℏ𝑚𝜓

 s : Spin projection quantum number 𝑆�̂�𝜓 =
ℏ

2
𝑠𝜓

 Calculate Button: Press to update display with new inputs.

 System Module:

 E_n: Energy of each energy eigenstate (in J)

 dE : Difference in energy between states (in J)

 f : Frequency of Light/Photon emitted in transition from ψ2 to ψ1 (in Hz)

Inputs

Outputs

[15]

Evaluation

 The program development went quickly and logically after refreshing on
some of the physics and API. It came out as a useful program (with only orbital
mechanics), making calculations for playing Kerbal Space Program, launching
amateur rockets, and checking others’ math on internet forums. After additions
(beyond orbital mechanics), it is now more accessible than writing a python script
or looking up formulas and using a high-precision calculator (TI-
83/WolframAlpha).

 Eventually, the program could be expanded into a more interactive drag-
and-drop simulator, which would require much more calculation and some large
graphics library. This, though, wouldn’t add much if the problem/terminology is
already understood. An integrator-like simulation of an orbit could be
implemented, but again would remove the convenience of a calculator. Further
development would require extensive research in integration algorithms and
plotting methods.

[16]

References

Adams, Allan. “Lecture 17: More on Central Potentials.” MIT OCW: 8.04 Quantum

Physics I. MIT, Spring 2013. Lecture.

Benson, Tom J. “Ideal Rocket Equation.” Beginner's Guide to Rockets. NASA, n.d.

Web. 11 Dec. 2014.

“Flight Dynamics.” How Things Fly. Smithsonian National Air and Space Museum,

n.d. Web. 22 Dec. 2014.

Lewin, Walter. “Lecture 1: Electric Charges-Polarization-Electric Force - Coulomb's

Law.” MIT OCW: 8.02 Electricity and Magnetism. MIT, Spring 2002. Lecture.

Lewin, Walter. “Lecture 11: Magnetic field - Lorentz Force - Torques - Electric

Motors (DC) - Oscilloscope.” MIT OCW: 8.02 Electricity and Magnetism.

MIT, Spring 2002. Lecture.

Mattuck, Arthur. “Lecture 25: Homogeneous Linear Systems with Constant

Coefficients: Solution via Matrix Eigenvalues (Real and Distinct Case).” MIT

OCW: 18.03 Differential Equations. MIT, Spring 2003. Lecture.

Stern, David P. “Newton's theory of ‘Universal Gravitation’.” From Stargazers to

Starships. NASA, 24 Mar. 2006. Web. 11 Dec. 2014.

“Windows API Index.” Microsoft Developer Network. Microsoft, n.d. Web. 11 Dec.

2014.

Wigand, Rob. “Calculate Escape Velocity.” NASA/JPL/MGS Education Outreach

Program, 5 Feb. 1998. Web. 22 Dec. 2014.

