
2016

Software
Development
Champion, PA

 LinExtractor

[1]

Table of Contents

2 Research

3 Description of Project
4 Plan of Work Log

5 Project Requirements

6 High-Level Software Design
7-8 Testing

9-11 End-User Product Documentation

12 Evaluation
13 References

14 DVD

[2]

Research

 Problems in advanced physics and mathematics can often be simplified to

linear equations. Examples include single and multi-spring systems, pendula, wave

motion, quantum potential systems, or even basic multi-variable algebra. Even

complex chaotic systems can undergo linearization by using Jacobian matrices at

critical values, being reduced to an eigenvalue equation.

 Though definitions of determinants, inverses, conjugates, transposes, and

classes of matrices can be found in a list in the back of any linear algebra textbook

(or google search), their computation by hand may be extremely intensive. For

example, a determinant on an n x n matrix takes multiplies n values by n

determinants of n-1 x n-1 matrices, meaning the number of operations required

grows by n3. This means while a 2x2 can be found in 3 seconds by an experienced

mathematician, a 13x13 may take a number of days.

 The current computation options are to either buy (or have one’s school

buy) an expensive mathematical package which may be bulky to load or require

waiting for computation time or to write your own program with an obfuscated

python or lua library (which may be required for more advanced functions like

neural network processing).

[3]

Description of Project

Problem: While matrices are easy to understand, they are difficult to use without

bulky arithmetic or software.

Solution: Develop a program to more easily reach linear algebraic solutions,

utilizing all necessary calculations.

A user of the program will likely have some interest in the fields they will

use the program for (physics, engineering, or purely mathematics). They will

surely be able to check their work for advanced problem sets and benefit in cases

such as finding 0 and stating no solution, where they would otherwise be

incorrect due to the quantity of arithmetic involved. Others may develop a better

grasp of the numerical importance of these values beyond a grueling process.

New mathematical insights may be revealed which have not even been given by

the program (classes of matrices obeying certain properties).

The program simply reads inputs when told do so and draws calculation

results on the screen. They allow for finding basic information which may be a

straining piece of a complex multi-step process such as:

[

1 0 0 0 0 𝑖 3
0 −1 0 −𝑖 0 0 0
0 0 0 0 −3𝑖 0 0
0 𝑖 0 0 0 0 −5𝑖 − 7
0 0 3𝑖 0 0 0 0
−𝑖 0 0 0 0 1 0
3 0 0 5𝑖 − 7 0 0 0]

[

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1]

(Is the resulting 7x7 matrix a Hermitian self-adjoint operator?)1

1 Yes

[4]

 Software Development

TECHNOLOGY STUDENT ASSOCIATION

PLAN OF WORK

Date Task
Time

involved

 Team

member

responsible

Comments

12/22/2015-

12/29/2015

Decided on an idea
and began

documentation and
development

3h-ideas
4h-program

2-ideas
1-program

Other ideas much
more bizarre or

impractical to solving a
problem

1/11/2016 Updated
documentation to
new simple data

calculation

3h 1,2 Plan for high-level
software design and

layout;
Class structure

1/12/2016 GUI tweaked from
template

4h 1 Empirical alignment
and abstract classes

1/12/2016 Updated
documentation and

presentation

3h 2 Added simple graphics
and matrix formatting

1/13/2016 Full matrix
functionality
implemented

4h 1,2 Combined GUI and
Matrix classes via
conversion and a

display event

2/18/2016 Planned
improvements with

new group

2h 1,2,3,4,5 Rework functionality,
describe more

precisely

2/23/2016-

3/3/2016

Implemented full
linear algebra

system

8h 1,2 Fixed order and matrix
size errors;

Implemented notation

3/24/2016-

4/2/2016

Updated
documents

Added features

4h

2,4,5-
document

1,3-program

Better diagrams,
animations

Reference values,
aligned boxes

4/5/2016 Final documents
and burn

2h 2,4,5 Documentation,
presentation, and
program on disk

Advisor signature

[5]

Project Requirements

 For a user to perform calculations accessibly, a Graphical User Interface
must be developed and interact with the calculation and abstracted portions of
the program. An API must be combined to handle the overhead load of displaying
this. All calculations must be reduced to functions with a set of inputs, but with an
individual printable output. This should consider what the user will know, how
they would most easily represent it, and how they could most easily read or reuse
it (convert to an answer or put into another program by no more than a simple
replace macro).

 The GUI must be simple and consistent, and the program’s calculations and
algorithms must be efficient as to be a fast alternative to other methods of
calculation (math packages, hand methods, agreeing with one’s textbook). A
majority of the problem must be visible to allow the user to modify their input.

 To interface, algorithms to convert between string and Matrix objects must
be implemented along with error correction. This should have well-defined
delimiters and allow for complex inputs such as 4.2526255e23+3.355e-45i.

[6]

Matrix Class

Constructor &
Destructor

High-level
allocation,

default Values

Accessors

Overloaded
Operators

Invertability,
Unitarity,

Hermiticity

Determinant &
Transpose

Minor Matrix
Determinants

Mutators

Redefine
New Matrix

MainWindow :
SDWindow

Abstract Class

Output

Accessors from
Matrix Class

Loop (State
Machine)

Wait, Process, Read,
Evaluate, Output

InputHandler
Class

Conversio
n

 (Matrix <->
string)

GUI Encapsulation Classes

InputField

Handle

Button

Initialization

Definition Classes

defs

IDs

resources

Common
Control

Definitions

High-Level Software Design

The matrices are instantiated from a Matrix class using stdc++ vectors in
their implementation. The values are private with accessors and operators
overridden (a substantial benefit of C++) for common functions which may be
necessary for computation.

Beyond a portable linear algebra library (which are often rewritten for
individual programs), higher-level stringstreams and conversion functions are
written to interface between a high-level object implementation and low-level API
access (stringstream -> string -> char[] ~ char* ~ long).

The built-in Microsoft Windows API is wrapped by the windows.h header
for a practical interface (could be easily copied to a multi-platform library). The
GUI will be called through the functions WinMain (an overridden main) and
WindowProcedure (The state event handler). Inputs are added as "EDIT" windows
and are returned as handles. The GetWindowText(HWND,char*,int) and
SetWindowText(HWND,char*) functions are utilized to read and write values
when a button’s ID is returned as a parameter in an event (WM_COMMAND). All
components are given unique ids for this process.

[7]

Testing

Matrix printout formatted properly when converting from input to matrix and
back.

Solution accuracy:

2+2 = [4] ✓

4x4 determinants match. ✓

Determinants correspond to Boolean functions. ✓

Even [

12 0 9 − 5 × 105𝑖 0
0 1 0 0

9 + 5 × 105𝑖 0 1 0
0 0 0 6

] properly returns self-adjoint. ✓

Identities of size NxN * a matrix of size NxM gives back the NxM matrix. ✓

An NxN incremental matrix has determinant 0. ✓

Module unit testing:

 With test matrix [
1 2 3
4 5 6
7 8 9

], all minors are found correctly. ✓

 All acceptable forms of input even with minor omissions for simplicity are

read accurately by the program. ✓

 The GUI navigates without errors in display, overlap, or stretching off

screen. ✓

 The Matrix and GUI classes function independently. ✓

 Input fields, dialog boxes, and other controls display properly without

intersection. ✓

 Format conversion functions provide recognizable input. ✓

[8]

Testing

Problems/Solutions:

 Arrays are size-immutable, but easy to address
o Use name-inspired std::vector class with overridden addressing

methods

 String methods were inconsistent in memory (delete[] necessary for
buffers)

o Used std::ostringstream class over cstdlib char* convert functions

 Outputs are too long
o Formatted and stress-tested to allow numbers as long in display as,

for example, 4.56746e112 to fit on the screen

 Crashes on inputting “ [a,b;c]”
o Check to ensure column sizes consistent and return ERR_MATRIX if

incompatible matrices constructed or operated on

 ∏ 𝐴𝑘
𝑁
𝑘=0 ≠ 𝐴0𝐴1 … 𝐴𝑁−1𝐴𝑁
o ∏ 𝐴𝑘

𝑁
𝑘=0 = 𝐴0(𝐴1(… (𝐴𝑁−1𝐴𝑁)…))

 OPEN: WIN32 API still uses low-level long character pointers for strings with
obfuscated typedefs. (Learn a better GUI library)

 OPEN: Leading constants read as 1x1 matrix (i.e. 3*[1,0;0,1] crashes, while
3*[1,0] returns [3,0]) (Add contextual conversion)

[9]

End-User Product Documentation:

LinExtractor

Beginning:

After starting the program, LinExt.exe, you will be met with the main

menu window.

Calculating:

After entering the program, you will be met with an input box with a

default value and a calculate button.

Type in the value of your input into the input text box, and then press

Calculate to update the outputs.

Formatting:

Inputs in the form [a,b,c;d,e,f;g,h,i] -> [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

𝑔 ℎ 𝑖
] (i.e. ‘,’ and ‘;’ to delimit)

One may use * between matrices for multiplication and/or + for

addition. (Remember, the group of 𝑛 𝑥 𝑏𝑦 𝑥 matrices under these operations

is non-abelian, therefore order matters)

Values in these must be between 2.2250738585072014 × 10−308 and

1.7976931348623158 × 10308 in one of these 3 forms:

 25463525

 2.5463525e7

 2.5463525e+7

Or Complex (real|imaginary) (pure imaginary must include 0|):

 3|425 = 3 + 425𝑖

 0|-204 = −204𝑖

 1944e345|-194e-6 = 1944 × 10345 − 194 × 10−6𝑖

Besides a 2147483647 limit to each dimension, computational power and

memory are the only limits.

[10]

End-User Product Documentation- Graphical Breakdown

To use the program, simply:

1. Type a valid Matrix expression utilizing valid MxN matrices (do not mix)

and both + and * operators to analyze in the input field.

2. Click on Calculate.

3. Observe and interpret your results (if an expression contains more than

one matrix, the result used for analysis will be displayed).

Outputs:

 Dimensions – Dimensions of the matrix (rows by columns)

 Square – true if the matrix has an equal number of rows and columns

 Determinant – Useful measure of the matrix; found recursively; used to
determine whether solutions exist or in eigenvalue analysis

 Invertible – true if there exists a matrix that when multiplied by this one,
one achieves the identity matrix

[11]

 Unitary – Whether the matrix preserves inner products when applied to
vectors

 Special – Whether the determinant is 1, leading to useful mathematical
symmetries

 Hermitian Self-Adjoint – Whether the complex conjugate of the
transpose is equal to the original matrix (useful as for a Hermitian matrix
H, ⟨𝜓|𝐻|𝜓⟩ is strictly real i.e. an observable value, allowing the
representation of complex systems)

 Trace – the sum of the diagonals; part of simplifying characteristic
equations

 Result – a representation of the final matrix used to calculate properties
(result of an expression)

Menus:

 File
o Exit – closes programs

 Actions
o Generate Identity – opens dialog to create an NxN trace identity

or fill a matrix with values
o Generate Incremental – fills a single input matrix with an

increasing series of values
o Find Wolfram String… - converts output matrix to the format used

in common Wolfram Products (Mathematica)
o Find MATLAB String… - converts output matrix to the format used

in the common MATLAB program

 Reference
o Trig Values and Pi Ratios – prints numerical results to common

“unit circle” values and whole number ratios of pi
o Common Constants – prints common mathematical constants

(π,e,√2)

 Help
o About – view abbreviated program documentation

[12]

Evaluation

 The program development went quickly and logically after refreshing on
some algorithms and generalized C++ libraries. Having experience with hand-
written Windows API code, it may have been the easiest part. Now, we’ve figured
out a simple general method for implementing mutable matrices along with how
to turn hand algorithms into functional steps. A few steps involved investigating
for half an hour to realize a single line was giving a bizarre output. Otherwise,
most methods functioned properly on the first attempt.

 Rather than using our current method of going to Wolfram Alpha,
searching, “determinant {{3,1,5,4},{9,7,4,2},{4,5,8,8},{1,4,5,3}},” and waiting for
computation time to be exceeded, we can quickly and cleanly click, plug the
matrix in, and our determinant/trace/etc. appears (sure without alternative forms
or step-by-step solutions). Some problems such as guessing whether a matrix is in
a Special Unitary group becomes tedious as the list of elements grows with
dimension. This program could easily tell us. With a scalable design and success
with relatively miniature dimensions, one should surely trust the program on
even larger matrices.

This program does successfully introduce theoretical functionality such as
determining whether a system of 10 to 32768 linear equations has one, none, or
infinitely many solutions which is beyond the reach of the average scientific
graphing calculator or free math package. It was designed to be small, avoiding
overhead, while leaving behind a reusable, simplistic, and practical linear algebra
library. To this goal, we find this project extremely successful.

 Eventually, the program could be expanded into multiple matrix
operations. For example, commutators, accessing matrix operators, returning
matrices from expressions (A-1 = AT), or eigenvalues/vectors could be
implemented. A more user-friendly input and perhaps matrix output would be
another simple addition. In the end, a graphical visualization of vectors
undergoing a transformation may be a much more useful and original idea.

[13]

References

Adams, Allan. “Lecture 7: More on Energy Eigenstates.” MIT OCW: 8.04 Quantum

Physics I. MIT, Spring 2013. Lecture.

“Complex number class.” C++ Reference. cplusplus.com, 2015 Web. 12 Jan. 2016

Mattuck, Arthur. “Lecture 25: Homogeneous Linear Systems with Constant

Coefficients: Solution via Matrix Eigenvalues (Real and Distinct Case).” MIT

OCW: 18.03 Differential Equations. MIT, Spring 2003. Lecture.

Strang, Gilbert. MIT OCW: 18.06 Linear Algebra. MIT, Spring 2010. Lecture.

 “Windows API Index.” Microsoft Developer Network. Microsoft, n.d. Web. 29 Dec.

2015.

